Part 1: Assignment Brief (team project) 600 words

Select a case study for the group from those presented in the reading for this unit.

You are required to design and create a scenario using Python which models the activities associated with the networked devices in a Systems of Systems (SoS) based on the examples provided.

An SoS, in general terms, are characterised by several features, often represented by the acronym (ABCDE) - that is:

- "Autonomy each system is free and independent with its own purpose of operation;
- **Belonging** systems function collaboratively to meet a common higher purpose;
- **Connectivity** synergism is enabled by the highly dynamic distributed network;
- Diversity the constituents are heterogeneous, self-sufficient systems that are open for enhancement by evolution and adaptation;
- Emerging the cumulative actions and interactions between the constituents of an SoS give rise to the behaviours that can be attributed to the SoS as a whole."

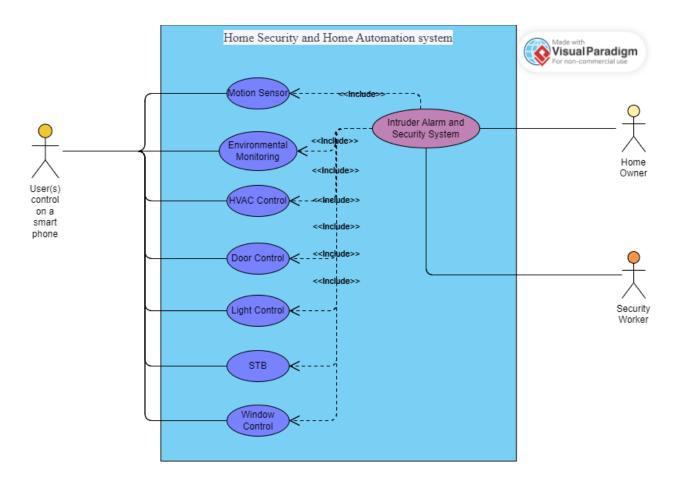
(Boardman and Sauser, 2006).

Some examples of an SoS include <u>an IoT network (as used in a smart home)</u>, a connected CPS (i.e., an autonomous or self-driving) car, or a fog computing system (consisting of IoT, edge and cloud devices). Some examples are given in the suggested journal articles.

Deliverable 1: Design Document

Create an Attack-Defence Tree (AD-Tree) that models the security vulnerabilities of a client, a hub or host (i.e the part that gathers data and makes decisions about the operation of the system) and the overall system, based on the case studies provided.

The tree should display typical vulnerabilities and you should select a suitable domain to allow quantitative evaluation of security vulnerabilities.


Checklist for Deliverable 1:

- Compile a list of potential vulnerabilities from academic resources (remember to cite all sources). (Knowledge and Understanding 15, Application of Knowledge and Understanding 10, Criticality 5)
- Create an AD Tree using the Luxembourg (or alternative) software for the client, the controller/ co-ordinator and the overall system to display the vulnerabilities of each and of the whole. (Knowledge and Understanding 10, Application of Knowledge and Understanding 15)
- Select a suitable domain to assign values to each element of the tree and justify your selection of a domain. (Criticality – 10)
- Based on your model, suggest suitable mitigation(s) to ameliorate the
 vulnerabilities. (Criticality 10)
- All decisions should be supported by related academic literature.

My Submission

Introduction

The (Kodali, et al., 2016) case study provides an overview of a low-cost system that serves as a smart home security and home automation (as seen on the usecase/figure below).

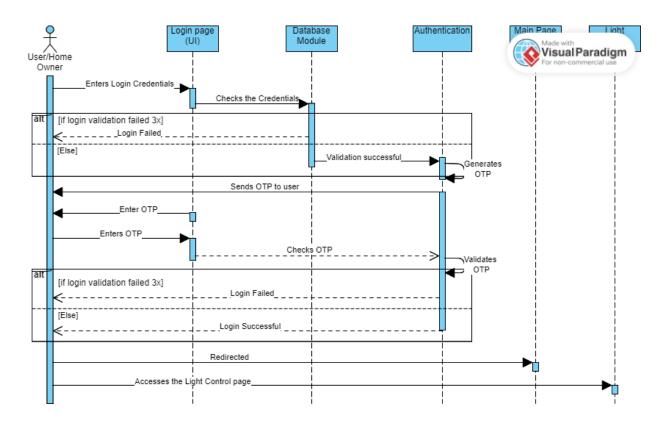
Below is a table showing the current features of the system that makes it to be vulnerable and the mitigations that can be applied (as referenced from (Touquer, et al., 2021), (Borgini, 2021), (Apriorit, 2022), (Anand, et al., 2020), (Abdullah, et al., 2019))

Features of the	Risks Accompanied	Potential	Possible
Current System		Vulnerabilities	Mitigations
It relies solely on	Unauthorized	Lack of Multi-	Multi-Factor
digits on the	access.	Factor	Authentication
phone's keypad to	Spoofing	Authentication	Implement
access the	Man-in-the-middle	• Lack of	changing of
security system	Attacks	authorization	passwords
	Installation of	Unencrypted	Implement
	malicious software	communication	complex
	Fines and lawsuits	Not enough	passwords
	that could lead to	security enforcing	
	damaged	features	Limit number of
	reputations,	Lack of data	log-in attempts
	bankruptcy and	privacy and	User Access
	losses	certified	controls
		compliances like	Authorizations
		GDPR, ISO	Session
		27001, ISO	management
		27017, ISO	Implement data
		27018, etc	privacy
The system's	Wi-Fi dependency	System is down	Set-up other
functionality is	Network attack	and security is	system
dependent on the	Denial-of-Service	compromised	connectivity e.g.,

Wi-Fi connection	(DoS) and Denial-of	once Wi-Fi	Local Area
only,	-Sleep (DoSL)	connection is lost	Connection
	attacks	or weak	Firewalls like Next-
		Insecure network	generation firewall
		Unencrypted	Limit device or
		communication	network bandwidth
			Backup
			connectivity
			options like 4G or
			3G, to ensure that
			the system
			remains
			operational even if
			the Wi-Fi
			connection is lost.
			Intrusion Detection
			and Prevention
			Systems
			Implementation of
			secure socket
			layer (SSL)
			Certificates,
			Data Encryption

			Network
			segmentation
Lack of security	More prone to	Lack of security	Regular security
tests that make	breaches	tests and	and backup
room for the		scanning	testing, and
system's			scanning for
improvements			threats helps in
			reinforcing the
			system
Lack of data	Injection attacks	Unsecure data	Secure databases
storage security	Tampering	storage	Antivirus
			Data encryption
Lack of Security	More prone to	Lack of Security	Regular and
Updates	breaches	Updates and	automatic System
		patches	and hardware
			updates
Unsecured device	Unauthorised	Malicious software	Use of secure
management	factory-resetting of	updates	updating
	devices	Device breaches	mechanisms like
	Installation of	Weak firmware or	digital signatures
	malicious software	software, servers,	Practising secure
	and updates	backend	Programming

	Software and	application	practices
	firmware risks and		System
	attacks		centralization
			Implementing
			secure device
			management
			protocols
			Limiting the
			number of device
			management
			access points
			Ensure tamper-
			resistant hardware
Human Error	Breaches	Human errors	Cybersecurity
	Social engineering		training on users


Scrum -Splint 1: with the use of Python language

- 1. Implement a user interface that will centralize the system
- 2. Implement Multi-Factor Authorization
- 3. Implement change of password
- 4. Validation of complex passwords
- 5. Access control and Authorization
- 6. Session Management

7. Prove the chosen thesis question by perfoming tests

8. Cookies and certificates csrf token

Activity Diagram of Authentication

References

Abdullah, T., Ali, W., Malebary, S. & Ahmed, A. A., 2019. A Review of Cyber Security Challenges, Attacks and Solutions for Internet of Things Based Smart Home. *International Journal of Computer Science and Network Security (IJCSNS)*, 19(9), pp. 139-146.

Anand, P. et al., 2020. IoT Vulnerability Assessment for Sustainable Computing: Threats, Current Solutions, and Open Challenges. *IEEE Access*, Volume 8, pp. 168825-168853.

Apriorit, 2022. Internet of Things (IoT) Security: Challenges and Best Practices. [Online]

Available at: https://www.apriorit.com/white-papers/513-iot-security

[Accessed 02 February 2023].

Borgini, J., 2021. *Tackle IoT application security threats and vulnerabilities*. [Online]

Available at: https://www.techtarget.com/iotagenda/tip/Tackle-IoT-application-security-threats-and-vulnerabilities

[Accessed 2 February 2023].

Kodali, R. K., Jain, V., Bose, S. & Boppana, L., 2016. *IoT based smart security and home automation system.* Greater Nodia, IEEE.

Touquer, H. et al., 2021. Smart home security: challenges, issues and solutions at different IoT layers. *The Journal of Supercomputing*, Volume 77, pp. 14053-14089.